Diagram vectors and Tight Frame Scaling in Finite Dimensions
We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the de...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Copenhaver, Martin S Yeon Hyang Kim Logan, Cortney Mayfield, Kyanne Narayan, Sivaram K Petro, Matthew J Sheperd, Jonathan |
description | We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085179515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085179515</sourcerecordid><originalsourceid>FETCH-proquest_journals_20851795153</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSBNjK3izFu_2LqHGuqXdaDb1_fbgAzwNzMxCJErrPCt3Sq1EytxLKdW-UMboRBwrtF2wI3xcG31gsHSHBrtnhHrWDq6tHZA6QIIaCaODCkdHjJ54I5YPO7BLf1yLbX1uTpfsFfx7chxvvZ8CzemmZGny4mByo_-7vvHMNwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085179515</pqid></control><display><type>article</type><title>Diagram vectors and Tight Frame Scaling in Finite Dimensions</title><source>Free E- Journals</source><creator>Copenhaver, Martin S ; Yeon Hyang Kim ; Logan, Cortney ; Mayfield, Kyanne ; Narayan, Sivaram K ; Petro, Matthew J ; Sheperd, Jonathan</creator><creatorcontrib>Copenhaver, Martin S ; Yeon Hyang Kim ; Logan, Cortney ; Mayfield, Kyanne ; Narayan, Sivaram K ; Petro, Matthew J ; Sheperd, Jonathan</creatorcontrib><description>We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Frames ; Hilbert space ; Polar coordinates ; Scaling ; Vector spaces</subject><ispartof>arXiv.org, 2013-03</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Copenhaver, Martin S</creatorcontrib><creatorcontrib>Yeon Hyang Kim</creatorcontrib><creatorcontrib>Logan, Cortney</creatorcontrib><creatorcontrib>Mayfield, Kyanne</creatorcontrib><creatorcontrib>Narayan, Sivaram K</creatorcontrib><creatorcontrib>Petro, Matthew J</creatorcontrib><creatorcontrib>Sheperd, Jonathan</creatorcontrib><title>Diagram vectors and Tight Frame Scaling in Finite Dimensions</title><title>arXiv.org</title><description>We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame.</description><subject>Frames</subject><subject>Hilbert space</subject><subject>Polar coordinates</subject><subject>Scaling</subject><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSBNjK3izFu_2LqHGuqXdaDb1_fbgAzwNzMxCJErrPCt3Sq1EytxLKdW-UMboRBwrtF2wI3xcG31gsHSHBrtnhHrWDq6tHZA6QIIaCaODCkdHjJ54I5YPO7BLf1yLbX1uTpfsFfx7chxvvZ8CzemmZGny4mByo_-7vvHMNwA</recordid><startdate>20130305</startdate><enddate>20130305</enddate><creator>Copenhaver, Martin S</creator><creator>Yeon Hyang Kim</creator><creator>Logan, Cortney</creator><creator>Mayfield, Kyanne</creator><creator>Narayan, Sivaram K</creator><creator>Petro, Matthew J</creator><creator>Sheperd, Jonathan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130305</creationdate><title>Diagram vectors and Tight Frame Scaling in Finite Dimensions</title><author>Copenhaver, Martin S ; Yeon Hyang Kim ; Logan, Cortney ; Mayfield, Kyanne ; Narayan, Sivaram K ; Petro, Matthew J ; Sheperd, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20851795153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Frames</topic><topic>Hilbert space</topic><topic>Polar coordinates</topic><topic>Scaling</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Copenhaver, Martin S</creatorcontrib><creatorcontrib>Yeon Hyang Kim</creatorcontrib><creatorcontrib>Logan, Cortney</creatorcontrib><creatorcontrib>Mayfield, Kyanne</creatorcontrib><creatorcontrib>Narayan, Sivaram K</creatorcontrib><creatorcontrib>Petro, Matthew J</creatorcontrib><creatorcontrib>Sheperd, Jonathan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copenhaver, Martin S</au><au>Yeon Hyang Kim</au><au>Logan, Cortney</au><au>Mayfield, Kyanne</au><au>Narayan, Sivaram K</au><au>Petro, Matthew J</au><au>Sheperd, Jonathan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Diagram vectors and Tight Frame Scaling in Finite Dimensions</atitle><jtitle>arXiv.org</jtitle><date>2013-03-05</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085179515 |
source | Free E- Journals |
subjects | Frames Hilbert space Polar coordinates Scaling Vector spaces |
title | Diagram vectors and Tight Frame Scaling in Finite Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Diagram%20vectors%20and%20Tight%20Frame%20Scaling%20in%20Finite%20Dimensions&rft.jtitle=arXiv.org&rft.au=Copenhaver,%20Martin%20S&rft.date=2013-03-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085179515%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085179515&rft_id=info:pmid/&rfr_iscdi=true |