Diagram vectors and Tight Frame Scaling in Finite Dimensions

We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-03
Hauptverfasser: Copenhaver, Martin S, Yeon Hyang Kim, Logan, Cortney, Mayfield, Kyanne, Narayan, Sivaram K, Petro, Matthew J, Sheperd, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame.
ISSN:2331-8422