Diagram vectors and Tight Frame Scaling in Finite Dimensions
We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the de...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames in R2 in a geometric fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension of this notion to Rn and Cn. Using the diagram vectors we give a characterization of tight frames in Rn or Cn. Further we provide a characterization of when a unit-norm frame in Rn or Cn can be scaled to a tight frame. This classification allows us to determine all scaling coefficients that make a unit-norm frame into a tight frame. |
---|---|
ISSN: | 2331-8422 |