Lorentz-Conformal Transformations in the Plane
While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shipman, Barbara A Shipman, Patrick D Shipman, Stephen P |
description | While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are transformed into curvilinear quadrilaterals where three sides determine the fourth by a geometric "rectangle rule," which can be expressed also by functional formulas. There is an explicit functional degree of freedom in choosing the mapping taking the square to a given quadrilateral. We characterize classes of Lorentz-conformal maps by their symmetries under subgroups of the dihedral group of order eight. Unfoldings of non-invertible mappings into invertible ones are reflected in a change of the symmetry group. The questions are simple; but the answers are not obvious, yet have beautiful geometric, algebraic, and functional descriptions and proofs. This is due to the very simple form of nonlinear Lorentz-conformal transformations in dimension 1+1, provided by characteristic coordinates. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085115182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085115182</sourcerecordid><originalsourceid>FETCH-proquest_journals_20851151823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ88kvSs0rqdJ1zs9Lyy_KTcxRCClKzCsGs0sy8_OKFTLzFEoyUhUCchLzUnkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLU0NDU0MLImDhVABdIMoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085115182</pqid></control><display><type>article</type><title>Lorentz-Conformal Transformations in the Plane</title><source>Free E- Journals</source><creator>Shipman, Barbara A ; Shipman, Patrick D ; Shipman, Stephen P</creator><creatorcontrib>Shipman, Barbara A ; Shipman, Patrick D ; Shipman, Stephen P</creatorcontrib><description>While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are transformed into curvilinear quadrilaterals where three sides determine the fourth by a geometric "rectangle rule," which can be expressed also by functional formulas. There is an explicit functional degree of freedom in choosing the mapping taking the square to a given quadrilateral. We characterize classes of Lorentz-conformal maps by their symmetries under subgroups of the dihedral group of order eight. Unfoldings of non-invertible mappings into invertible ones are reflected in a change of the symmetry group. The questions are simple; but the answers are not obvious, yet have beautiful geometric, algebraic, and functional descriptions and proofs. This is due to the very simple form of nonlinear Lorentz-conformal transformations in dimension 1+1, provided by characteristic coordinates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conformal mapping ; Group theory ; Mathematical analysis ; Quadrilaterals ; Subgroups ; Transformations (mathematics) ; Wave equations</subject><ispartof>arXiv.org, 2013-07</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Shipman, Barbara A</creatorcontrib><creatorcontrib>Shipman, Patrick D</creatorcontrib><creatorcontrib>Shipman, Stephen P</creatorcontrib><title>Lorentz-Conformal Transformations in the Plane</title><title>arXiv.org</title><description>While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are transformed into curvilinear quadrilaterals where three sides determine the fourth by a geometric "rectangle rule," which can be expressed also by functional formulas. There is an explicit functional degree of freedom in choosing the mapping taking the square to a given quadrilateral. We characterize classes of Lorentz-conformal maps by their symmetries under subgroups of the dihedral group of order eight. Unfoldings of non-invertible mappings into invertible ones are reflected in a change of the symmetry group. The questions are simple; but the answers are not obvious, yet have beautiful geometric, algebraic, and functional descriptions and proofs. This is due to the very simple form of nonlinear Lorentz-conformal transformations in dimension 1+1, provided by characteristic coordinates.</description><subject>Conformal mapping</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Quadrilaterals</subject><subject>Subgroups</subject><subject>Transformations (mathematics)</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ88kvSs0rqdJ1zs9Lyy_KTcxRCClKzCsGs0sy8_OKFTLzFEoyUhUCchLzUnkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLU0NDU0MLImDhVABdIMoM</recordid><startdate>20130703</startdate><enddate>20130703</enddate><creator>Shipman, Barbara A</creator><creator>Shipman, Patrick D</creator><creator>Shipman, Stephen P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130703</creationdate><title>Lorentz-Conformal Transformations in the Plane</title><author>Shipman, Barbara A ; Shipman, Patrick D ; Shipman, Stephen P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20851151823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Conformal mapping</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Quadrilaterals</topic><topic>Subgroups</topic><topic>Transformations (mathematics)</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Shipman, Barbara A</creatorcontrib><creatorcontrib>Shipman, Patrick D</creatorcontrib><creatorcontrib>Shipman, Stephen P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shipman, Barbara A</au><au>Shipman, Patrick D</au><au>Shipman, Stephen P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lorentz-Conformal Transformations in the Plane</atitle><jtitle>arXiv.org</jtitle><date>2013-07-03</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are transformed into curvilinear quadrilaterals where three sides determine the fourth by a geometric "rectangle rule," which can be expressed also by functional formulas. There is an explicit functional degree of freedom in choosing the mapping taking the square to a given quadrilateral. We characterize classes of Lorentz-conformal maps by their symmetries under subgroups of the dihedral group of order eight. Unfoldings of non-invertible mappings into invertible ones are reflected in a change of the symmetry group. The questions are simple; but the answers are not obvious, yet have beautiful geometric, algebraic, and functional descriptions and proofs. This is due to the very simple form of nonlinear Lorentz-conformal transformations in dimension 1+1, provided by characteristic coordinates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085115182 |
source | Free E- Journals |
subjects | Conformal mapping Group theory Mathematical analysis Quadrilaterals Subgroups Transformations (mathematics) Wave equations |
title | Lorentz-Conformal Transformations in the Plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lorentz-Conformal%20Transformations%20in%20the%20Plane&rft.jtitle=arXiv.org&rft.au=Shipman,%20Barbara%20A&rft.date=2013-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085115182%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085115182&rft_id=info:pmid/&rfr_iscdi=true |