Lorentz-Conformal Transformations in the Plane
While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While conformal transformations of the plane preserve Laplace's equation, Lorentz-conformal mappings preserve the wave equation. We discover how simple geometric objects, such as quadrilaterals and pairs of crossing curves, are transformed under nonlinear Lorentz-conformal mappings. Squares are transformed into curvilinear quadrilaterals where three sides determine the fourth by a geometric "rectangle rule," which can be expressed also by functional formulas. There is an explicit functional degree of freedom in choosing the mapping taking the square to a given quadrilateral. We characterize classes of Lorentz-conformal maps by their symmetries under subgroups of the dihedral group of order eight. Unfoldings of non-invertible mappings into invertible ones are reflected in a change of the symmetry group. The questions are simple; but the answers are not obvious, yet have beautiful geometric, algebraic, and functional descriptions and proofs. This is due to the very simple form of nonlinear Lorentz-conformal transformations in dimension 1+1, provided by characteristic coordinates. |
---|---|
ISSN: | 2331-8422 |