Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector

We propose a back-reflecting scheme in order to enhance the maximum achievable current in one micron thick crystalline silicon solar cells. We perform 3-dimensional numerical investigations of the scattering properties of metallic nanostructures located at the back side, and optimize them for enhanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-06
Hauptverfasser: Jain, Samart, Depauw, Valerie, Miljkovic, Vladimir D, Dmitriev, Alexamder, Trompoukis, Christos, Gordon, Ivan, Pol van Dorpe, Ounsi El Daif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a back-reflecting scheme in order to enhance the maximum achievable current in one micron thick crystalline silicon solar cells. We perform 3-dimensional numerical investigations of the scattering properties of metallic nanostructures located at the back side, and optimize them for enhancing absorption in the silicon layer. We validate our numerical results experimentally and also compare the absorption enhancement in the solar cell structure, both with quasi-periodic and random metallic nanostructures. We have looked at the interplay between the metallic nanostructures and an integrated back-reflector. We show that the combination of metallic nanoparticles and a metallic reflector results in significant parasitic absorption. We compared this to another implementation based on titanium dioxide nanoparticles which act as a lambertian reflector of light. Our simulation and experimental results show that this proposed configuration results in reduced absorption losses and in broadband enhancement of absorption for ultra-thin solar cells, paving the way to an optimal back reflector for thin film photovoltaics.
ISSN:2331-8422