Pseudo-spherical Surfaces of Low Differentiability
We continue our investigations into Toda's algorithm [14,3]; a Weierstrass-type representation of Gauss curvature \(K=-1\) surfaces in \(\mathbb{R}^3\). We show that \(C^0\) input potentials correspond in an appealing way to a special new class of surfaces, with \(K=-1\), which we call \(C^{1M}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue our investigations into Toda's algorithm [14,3]; a Weierstrass-type representation of Gauss curvature \(K=-1\) surfaces in \(\mathbb{R}^3\). We show that \(C^0\) input potentials correspond in an appealing way to a special new class of surfaces, with \(K=-1\), which we call \(C^{1M}\). These are surfaces which may not be \(C^2\), but whose mixed second partials are continuous and equal. We also extend several results of Hartman-Wintner [5] concerning special coordinate changes which increase differentiability of immersions of \(K=-1\) surfaces. We prove a \(C^{1M}\) version of Hilbert's Theorem. |
---|---|
ISSN: | 2331-8422 |