A p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties

Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the p-adic L-function of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-12
Hauptverfasser: Balakrishnan, Jennifer S, J Steffen Müller, Stein, William A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the p-adic L-function of a modular abelian variety and showing that it satisfies the appropriate interpolation property. This relies on a careful normalization of the p-adic L-function, which we achieve by a comparison of periods. Our generalization agrees with the conjecture of Mazur, Tate, Teitelbaum in dimension 1 and the classical Birch Swinnerton-Dyer conjecture formulated by Tate in rank 0. We describe the theoretical techniques used to formulate the conjecture and give numerical evidence supporting the conjecture in the case when the modular abelian variety is of dimension 2.
ISSN:2331-8422