Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality

We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2018-08, Vol.291 (11-12), p.1801-1814
Hauptverfasser: Kračmar, Stanislav, Neustupa, Jiří
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201700228