Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality
We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2018-08, Vol.291 (11-12), p.1801-1814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201700228 |