Bohr radius for locally univalent harmonic mappings
We consider the class of all sense‐preserving harmonic mappings f=h+g¯ of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr radius if any one of the following conditions holds: 1.h is bounded in D. 2.h satisfies the condition Re h(z)≤1 in D with h(0)>0. 3.both h and...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2018-08, Vol.291 (11-12), p.1757-1768 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the class of all sense‐preserving harmonic mappings f=h+g¯ of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr radius if any one of the following conditions holds:
1.h is bounded in D.
2.h satisfies the condition Re h(z)≤1 in D with h(0)>0.
3.both h and g are bounded in D.
4.h is bounded and g′(0)=0.
We also consider the problem of determining the Bohr radius when the supremum of the modulus of the dilatation of f in D is strictly less than 1. In addition, we determine the Bohr radius for the space B of analytic Bloch functions and the space BH of harmonic Bloch functions. The paper concludes with two conjectures. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201700068 |