Bohr radius for locally univalent harmonic mappings

We consider the class of all sense‐preserving harmonic mappings f=h+g¯ of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr radius if any one of the following conditions holds: 1.h is bounded in D. 2.h satisfies the condition Re h(z)≤1 in D with h(0)>0. 3.both h and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2018-08, Vol.291 (11-12), p.1757-1768
Hauptverfasser: Kayumov, Ilgiz R, Ponnusamy, Saminathan, Shakirov, Nail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the class of all sense‐preserving harmonic mappings f=h+g¯ of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr radius if any one of the following conditions holds: 1.h is bounded in D. 2.h satisfies the condition Re h(z)≤1 in D with h(0)>0. 3.both h and g are bounded in D. 4.h is bounded and g′(0)=0. We also consider the problem of determining the Bohr radius when the supremum of the modulus of the dilatation of f in D is strictly less than 1. In addition, we determine the Bohr radius for the space B of analytic Bloch functions and the space BH of harmonic Bloch functions. The paper concludes with two conjectures.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201700068