Solving the Linear 1D Thermoelasticity Equations with Pure Delay

We propose a system of partial differential equations with a single constant delay \(\tau > 0\) describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of \(\mathbb{R}^{1}\). For an initial-boundary value problem associated with this system, we prove a global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
Hauptverfasser: Denys Ya Khusainov, Pokojovy, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a system of partial differential equations with a single constant delay \(\tau > 0\) describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of \(\mathbb{R}^{1}\). For an initial-boundary value problem associated with this system, we prove a global well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as \(\tau \to 0\). Finally, we deduce an explicit solution representation for the delay problem.
ISSN:2331-8422