Darboux integrability of determinant and equations for principal minors
We consider equations that represent a constancy condition for a 2D Wronskian, mixed Wronskian-Casoratian and 2D Casoratian. These determinantal equations are shown to have the number of independent integrals equal to their order - this implies Darboux integrability. On the other hand, the recurrent...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider equations that represent a constancy condition for a 2D Wronskian, mixed Wronskian-Casoratian and 2D Casoratian. These determinantal equations are shown to have the number of independent integrals equal to their order - this implies Darboux integrability. On the other hand, the recurrent formulas for the leading principal minors are equivalent to the 2D Toda equation and its semi-discrete and lattice analogues with particular boundary conditions (cut-off constraints). This connection is used to obtain recurrent formulas and closed-form expressions for integrals of the Toda-type equations from the integrals of the determinantal equations. General solutions of the equations corresponding to vanishing determinants are given explicitly while in the non-vanishing case they are given in terms of solutions of ordinary linear equations. |
---|---|
ISSN: | 2331-8422 |