Kähler geometry of bounded pseudoconvex Hartogs domains
Let \(\Omega\) be a bounded pseudoconvex Hartogs domain. There exists a natural complete K\"ahler metric \(g^{\Omega}\) in terms of its defining function. In this paper, we study two problems. The first one is determining when \(g^{\Omega}\) is Einstein or extremal. The second one is the existe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\Omega\) be a bounded pseudoconvex Hartogs domain. There exists a natural complete K\"ahler metric \(g^{\Omega}\) in terms of its defining function. In this paper, we study two problems. The first one is determining when \(g^{\Omega}\) is Einstein or extremal. The second one is the existence of holomorphic isometric immersions of \((\Omega, g^{\Omega})\) into finite or infinite dimensional complex space forms. |
---|---|
ISSN: | 2331-8422 |