User Session Identification Based on Strong Regularities in Inter-activity Time

Session identification is a common strategy used to develop metrics for web analytics and behavioral analyses of user-facing systems. Past work has argued that session identification strategies based on an inactivity threshold is inherently arbitrary or advocated that thresholds be set at about 30 m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-08
Hauptverfasser: Halfaker, Aaron, Keyes, Os, Kluver, Daniel, Thebault-Spieker, Jacob, Nguyen, Tien, Shores, Kenneth, Uduwage, Anuradha, Warncke-Wang, Morten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Session identification is a common strategy used to develop metrics for web analytics and behavioral analyses of user-facing systems. Past work has argued that session identification strategies based on an inactivity threshold is inherently arbitrary or advocated that thresholds be set at about 30 minutes. In this work, we demonstrate a strong regularity in the temporal rhythms of user initiated events across several different domains of online activity (incl. video gaming, search, page views and volunteer contributions). We describe a methodology for identifying clusters of user activity and argue that regularity with which these activity clusters appear implies a good rule-of-thumb inactivity threshold of about 1 hour. We conclude with implications that these temporal rhythms may have for system design based on our observations and theories of goal-directed human activity.
ISSN:2331-8422