Accelerating the ANT Colony Optimization By Smart ANTs, Using Genetic Operator
This paper research review Ant colony optimization (ACO) and Genetic Algorithm (GA), both are two powerful meta-heuristics. This paper explains some major defects of these two algorithm at first then proposes a new model for ACO in which, artificial ants use a quick genetic operator and accelerate t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper research review Ant colony optimization (ACO) and Genetic Algorithm (GA), both are two powerful meta-heuristics. This paper explains some major defects of these two algorithm at first then proposes a new model for ACO in which, artificial ants use a quick genetic operator and accelerate their actions in selecting next state. Experimental results show that proposed hybrid algorithm is effective and its performance including speed and accuracy beats other version. |
---|---|
ISSN: | 2331-8422 |