Quantizing the geodesic flow via adapted complex structures

The geometric quantization of the geodesic flow on a compact Riemannian manifold via the BKS "dragging projection" yields the Laplacian plus a scalar curvature term. To avoid convergence issues, the standard construction involves somewhat unnatural hypotheses that do not hold in typical ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-08
1. Verfasser: Kirwin, William D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geometric quantization of the geodesic flow on a compact Riemannian manifold via the BKS "dragging projection" yields the Laplacian plus a scalar curvature term. To avoid convergence issues, the standard construction involves somewhat unnatural hypotheses that do not hold in typical examples. In this paper, we use adapted complex structures to make sense of a Wick-rotated version of the dragging projection which avoids the convergence issues.
ISSN:2331-8422