Symplectic structures on \(3\)-Lie algebras

The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-08
Hauptverfasser: Bai, Ruipu, Chen, Shuangshuang, Cheng, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bai, Ruipu
Chen, Shuangshuang
Cheng, Rong
description The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084571210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084571210</sourcerecordid><originalsourceid>FETCH-proquest_journals_20845712103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDq7MLchJTS7JTFYoLikqTS4pLUotVsjPU4jRMI7R1PXJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTU3NDI0MDY-JUAQAVTjCO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084571210</pqid></control><display><type>article</type><title>Symplectic structures on \(3\)-Lie algebras</title><source>Free E- Journals</source><creator>Bai, Ruipu ; Chen, Shuangshuang ; Cheng, Rong</creator><creatorcontrib>Bai, Ruipu ; Chen, Shuangshuang ; Cheng, Rong</creatorcontrib><description>The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Construction ; Derivation ; Lie groups ; Quantum theory</subject><ispartof>arXiv.org, 2014-08</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bai, Ruipu</creatorcontrib><creatorcontrib>Chen, Shuangshuang</creatorcontrib><creatorcontrib>Cheng, Rong</creatorcontrib><title>Symplectic structures on \(3\)-Lie algebras</title><title>arXiv.org</title><description>The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation.</description><subject>Algebra</subject><subject>Construction</subject><subject>Derivation</subject><subject>Lie groups</subject><subject>Quantum theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDq7MLchJTS7JTFYoLikqTS4pLUotVsjPU4jRMI7R1PXJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTU3NDI0MDY-JUAQAVTjCO</recordid><startdate>20140819</startdate><enddate>20140819</enddate><creator>Bai, Ruipu</creator><creator>Chen, Shuangshuang</creator><creator>Cheng, Rong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140819</creationdate><title>Symplectic structures on \(3\)-Lie algebras</title><author>Bai, Ruipu ; Chen, Shuangshuang ; Cheng, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20845712103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Construction</topic><topic>Derivation</topic><topic>Lie groups</topic><topic>Quantum theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Ruipu</creatorcontrib><creatorcontrib>Chen, Shuangshuang</creatorcontrib><creatorcontrib>Cheng, Rong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Ruipu</au><au>Chen, Shuangshuang</au><au>Cheng, Rong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symplectic structures on \(3\)-Lie algebras</atitle><jtitle>arXiv.org</jtitle><date>2014-08-19</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084571210
source Free E- Journals
subjects Algebra
Construction
Derivation
Lie groups
Quantum theory
title Symplectic structures on \(3\)-Lie algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symplectic%20structures%20on%20%5C(3%5C)-Lie%20algebras&rft.jtitle=arXiv.org&rft.au=Bai,%20Ruipu&rft.date=2014-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084571210%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084571210&rft_id=info:pmid/&rfr_iscdi=true