Symplectic structures on \(3\)-Lie algebras
The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie al...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation. |
---|---|
ISSN: | 2331-8422 |