Symplectic structures on \(3\)-Lie algebras

The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-08
Hauptverfasser: Bai, Ruipu, Chen, Shuangshuang, Cheng, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The symplectic structures on \(3\)-Lie algebras and metric symplectic \(3\)-Lie algebras are studied. For arbitrary \(3\)-Lie algebra \(L\), infinite many metric symplectic \(3\)-Lie algebras are constructed. It is proved that a metric \(3\)-Lie algebra \((A, B)\) is a metric symplectic \(3\)-Lie algebra if and only if there exists an invertible derivation \(D\) such that \(D\in Der_B(A)\), and is also proved that every metric symplectic \(3\)-Lie algebra \((\tilde{A}, \tilde{B}, \tilde{\omega})\) is a \(T^*_{\theta}\)-extension of a metric symplectic \(3\)-Lie algebra \((A, B, \omega)\). Finally, we construct a metric symplectic double extension of a metric symplectic \(3\)-Lie algebra by means of a special derivation.
ISSN:2331-8422