Cone Crusher Model Identification Using Block-Oriented Systems with Orthonormal Basis Functions

In this paper, block-oriented systems with linear parts based on Laguerre functions is used to approximation of a cone crusher dynamics. Adaptive recursive least squares algorithm is used to identification of Laguerre model. Various structures of Hammerstein, Wiener, Hammerstein-Wiener models are te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-08
1. Verfasser: Mykhailenko, Oleksii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, block-oriented systems with linear parts based on Laguerre functions is used to approximation of a cone crusher dynamics. Adaptive recursive least squares algorithm is used to identification of Laguerre model. Various structures of Hammerstein, Wiener, Hammerstein-Wiener models are tested and the MATLAB simulation results are compared. The mean square error is used for models validation. It has been found that Hammerstein-Wiener with orthonormal basis functions improves the quality of approximation plant dynamics. The mean square error for this model is 11% on average throughout the considered range of the external disturbances amplitude. The analysis also showed that Wiener model cannot provide sufficient approximation accuracy of the cone crusher dynamics. During the process it is unstable due to the high sensitivity to disturbances on the output. The Hammerstein-Wiener model will be used to the design nonlinear model predictive control application.
ISSN:2331-8422