Weighted decomposition in high-performance lattice-Boltzmann simulations: are some lattice sites more equal than others?

Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann simulations of realistic sparse problems to the exascale. Here we analyze the effect of weighted decomposition on the performance of the HemeLB lattice-Boltzmann simulation environment, when applied to sparse do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
Hauptverfasser: Groen, Derek, David Abou Chacra, Nash, Rupert W, Jaros, Jiri, Bernabeu, Miguel O, Coveney, Peter V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann simulations of realistic sparse problems to the exascale. Here we analyze the effect of weighted decomposition on the performance of the HemeLB lattice-Boltzmann simulation environment, when applied to sparse domains. Prior to domain decomposition, we assign wall and in/outlet sites with increased weights which reflect their increased computational cost. We combine our weighted decomposition with a second optimization, which is to sort the lattice sites according to a space filling curve. We tested these strategies on a sparse bifurcation and very sparse aneurysm geometry, and find that using weights reduces calculation load imbalance by up to 85%, although the overall communication overhead is higher than some of our runs.
ISSN:2331-8422