Constrained Runs algorithm as a lifting operator for the Boltzmann equation
Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vanderhoydonc, Ynte Vanroose, Wim |
description | Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann models is the Constrained Runs algorithm. This algorithm is used in literature for the initialization of lattice Boltzmann models, special discretizations of the Boltzmann equation. It is based on the attraction of the dynamics toward the slow manifold and uses lattice Boltzmann steps to converge to the desired dynamics on the slow manifold. We focus on applying the Constrained Runs algorithm to map density, average flow velocity, and temperature, the macroscopic variables, to distribution functions. Furthermore, we do not consider only lattice Boltzmann models. We want to perform the algorithm for different discretizations of the Boltzmann equation and consider a standard finite volume discretization. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084532961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084532961</sourcerecordid><originalsourceid>FETCH-proquest_journals_20845329613</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMgWLT_8MC5kCZtratFEdzEvQRM25Q0r01eFr_eDn6Aw-VwOHfDEiFlntWFEDuWhjByzkV1EmUpE_Zo0AXyyjj9hmd0AZTt0RsaJlCrgDUdGdcDztorQg_dOho0XNDSZ1LOgV6iIoPuwLadskGnP-7Z8XZ9Nfds9rhEHagdMXq3plbwuiilOFe5_O_1BTcZPXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084532961</pqid></control><display><type>article</type><title>Constrained Runs algorithm as a lifting operator for the Boltzmann equation</title><source>Freely Accessible Journals</source><creator>Vanderhoydonc, Ynte ; Vanroose, Wim</creator><creatorcontrib>Vanderhoydonc, Ynte ; Vanroose, Wim</creatorcontrib><description>Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann models is the Constrained Runs algorithm. This algorithm is used in literature for the initialization of lattice Boltzmann models, special discretizations of the Boltzmann equation. It is based on the attraction of the dynamics toward the slow manifold and uses lattice Boltzmann steps to converge to the desired dynamics on the slow manifold. We focus on applying the Constrained Runs algorithm to map density, average flow velocity, and temperature, the macroscopic variables, to distribution functions. Furthermore, we do not consider only lattice Boltzmann models. We want to perform the algorithm for different discretizations of the Boltzmann equation and consider a standard finite volume discretization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Boltzmann transport equation ; Distribution functions ; Flow mapping ; Flow velocity ; Manifolds ; Mathematical models ; Numerical methods ; Operators (mathematics)</subject><ispartof>arXiv.org, 2014-10</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vanderhoydonc, Ynte</creatorcontrib><creatorcontrib>Vanroose, Wim</creatorcontrib><title>Constrained Runs algorithm as a lifting operator for the Boltzmann equation</title><title>arXiv.org</title><description>Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann models is the Constrained Runs algorithm. This algorithm is used in literature for the initialization of lattice Boltzmann models, special discretizations of the Boltzmann equation. It is based on the attraction of the dynamics toward the slow manifold and uses lattice Boltzmann steps to converge to the desired dynamics on the slow manifold. We focus on applying the Constrained Runs algorithm to map density, average flow velocity, and temperature, the macroscopic variables, to distribution functions. Furthermore, we do not consider only lattice Boltzmann models. We want to perform the algorithm for different discretizations of the Boltzmann equation and consider a standard finite volume discretization.</description><subject>Algorithms</subject><subject>Boltzmann transport equation</subject><subject>Distribution functions</subject><subject>Flow mapping</subject><subject>Flow velocity</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirEKwjAURYMgWLT_8MC5kCZtratFEdzEvQRM25Q0r01eFr_eDn6Aw-VwOHfDEiFlntWFEDuWhjByzkV1EmUpE_Zo0AXyyjj9hmd0AZTt0RsaJlCrgDUdGdcDztorQg_dOho0XNDSZ1LOgV6iIoPuwLadskGnP-7Z8XZ9Nfds9rhEHagdMXq3plbwuiilOFe5_O_1BTcZPXo</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Vanderhoydonc, Ynte</creator><creator>Vanroose, Wim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141016</creationdate><title>Constrained Runs algorithm as a lifting operator for the Boltzmann equation</title><author>Vanderhoydonc, Ynte ; Vanroose, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20845329613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Boltzmann transport equation</topic><topic>Distribution functions</topic><topic>Flow mapping</topic><topic>Flow velocity</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vanderhoydonc, Ynte</creatorcontrib><creatorcontrib>Vanroose, Wim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderhoydonc, Ynte</au><au>Vanroose, Wim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constrained Runs algorithm as a lifting operator for the Boltzmann equation</atitle><jtitle>arXiv.org</jtitle><date>2014-10-16</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann models is the Constrained Runs algorithm. This algorithm is used in literature for the initialization of lattice Boltzmann models, special discretizations of the Boltzmann equation. It is based on the attraction of the dynamics toward the slow manifold and uses lattice Boltzmann steps to converge to the desired dynamics on the slow manifold. We focus on applying the Constrained Runs algorithm to map density, average flow velocity, and temperature, the macroscopic variables, to distribution functions. Furthermore, we do not consider only lattice Boltzmann models. We want to perform the algorithm for different discretizations of the Boltzmann equation and consider a standard finite volume discretization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084532961 |
source | Freely Accessible Journals |
subjects | Algorithms Boltzmann transport equation Distribution functions Flow mapping Flow velocity Manifolds Mathematical models Numerical methods Operators (mathematics) |
title | Constrained Runs algorithm as a lifting operator for the Boltzmann equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constrained%20Runs%20algorithm%20as%20a%20lifting%20operator%20for%20the%20Boltzmann%20equation&rft.jtitle=arXiv.org&rft.au=Vanderhoydonc,%20Ynte&rft.date=2014-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084532961%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084532961&rft_id=info:pmid/&rfr_iscdi=true |