Constrained Runs algorithm as a lifting operator for the Boltzmann equation

Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
Hauptverfasser: Vanderhoydonc, Ynte, Vanroose, Wim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lifting operators play an important role in starting a kinetic Boltzmann model from given macroscopic information. The macroscopic variables need to be mapped to the distribution functions, mesoscopic variables of the Boltzmann model. A well-known numerical method for the initialization of Boltzmann models is the Constrained Runs algorithm. This algorithm is used in literature for the initialization of lattice Boltzmann models, special discretizations of the Boltzmann equation. It is based on the attraction of the dynamics toward the slow manifold and uses lattice Boltzmann steps to converge to the desired dynamics on the slow manifold. We focus on applying the Constrained Runs algorithm to map density, average flow velocity, and temperature, the macroscopic variables, to distribution functions. Furthermore, we do not consider only lattice Boltzmann models. We want to perform the algorithm for different discretizations of the Boltzmann equation and consider a standard finite volume discretization.
ISSN:2331-8422