A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings
A major challenge in applying Model Predictive Control (MPC) to building automation and control (BAC) is the development of a simplified mathematical model of the building for real-time control with fast response times. However, building models are highly complex due to nonlinearities in heat and ma...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2018-07, Vol.170, p.25-39 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major challenge in applying Model Predictive Control (MPC) to building automation and control (BAC) is the development of a simplified mathematical model of the building for real-time control with fast response times. However, building models are highly complex due to nonlinearities in heat and mass transfer processes of the building itself and the accompanying air-conditioning and mechanical ventilation systems. This paper proposes a method to develop an integrated state-space model (SSM) for indoor air temperature, radiant temperature, humidity and Predicted Mean Vote (PMV) index suitable for fast real-time multiple objectives optimization. Using the model, a multi-objective MPC controller is developed and its performance is evaluated through a case study on the BCA SkyLab test bed facility in Singapore. The runtime of the MPC controller is less than 0.1 s per optimization, which is suitable for real-time BAC applications. Compared to the conventional ON/OFF control, the MPC controller can achieve up to 19.4% energy savings while keeping the PMV index within the acceptable comfort range. When the MPC controller is adjusted to be thermal-comfort-dominant that achieves a neutral PMV index at most office hours, the system can still bring about 6% in energy savings as compared to the conventional ON/OFF control. |
---|---|
ISSN: | 0378-7788 1872-6178 |
DOI: | 10.1016/j.enbuild.2018.03.082 |