Approximate Regularization Path for Nuclear Norm Based H2 Model Reduction

This paper concerns model reduction of dynamical systems using the nuclear norm of the Hankel matrix to make a trade-off between model fit and model complexity. This results in a convex optimization problem where this trade-off is determined by one crucial design parameter. The main contribution is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-07
Hauptverfasser: Blomberg, Niclas, Rojas, Cristian R, Wahlberg, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns model reduction of dynamical systems using the nuclear norm of the Hankel matrix to make a trade-off between model fit and model complexity. This results in a convex optimization problem where this trade-off is determined by one crucial design parameter. The main contribution is a methodology to approximately calculate all solutions up to a certain tolerance to the model reduction problem as a function of the design parameter. This is called the regularization path in sparse estimation and is a very important tool in order to find the appropriate balance between fit and complexity. We extend this to the more complicated nuclear norm case. The key idea is to determine when to exactly calculate the optimal solution using an upper bound based on the so-called duality gap. Hence, by solving a fixed number of optimization problems the whole regularization path up to a given tolerance can be efficiently computed. We illustrate this approach on some numerical examples.
ISSN:2331-8422