Two divisors of (n^2+1)/2 summing up to {\delta}n+{\epsilon}, for {\delta} and {\epsilon} even

In this paper we are dealing with the problem of the existence of two divisors of \((n^2+1)/2\) whose sum is equal to \(\delta n+\varepsilon\), in the case when \(\delta\) and \(\varepsilon\) are even, or more precisely in the case in which \(\delta\equiv\varepsilon+2\equiv0\) or \(2 \pmod{4}\). We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-07
1. Verfasser: Bujačić, Sanda
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we are dealing with the problem of the existence of two divisors of \((n^2+1)/2\) whose sum is equal to \(\delta n+\varepsilon\), in the case when \(\delta\) and \(\varepsilon\) are even, or more precisely in the case in which \(\delta\equiv\varepsilon+2\equiv0\) or \(2 \pmod{4}\). We will completely solve the cases \(\delta=2, \delta=4\) and \(\varepsilon=0\).
ISSN:2331-8422