Normal all pseudo-Anosov subgroups of mapping class groups

We construct the first known examples of nontrivial, normal, all pseudo-Anosov subgroups of mapping class groups of surfaces. Specifically, we construct such subgroups for the closed genus two surface and for the sphere with five or more punctures. Using the branched covering of the genus two surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2000-10
1. Verfasser: Whittlesey, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct the first known examples of nontrivial, normal, all pseudo-Anosov subgroups of mapping class groups of surfaces. Specifically, we construct such subgroups for the closed genus two surface and for the sphere with five or more punctures. Using the branched covering of the genus two surface over the sphere and results of Birman and Hilden, we prove that a reducible mapping class of the genus two surface projects to a reducible mapping class on the sphere with six punctures. The construction introduces "Brunnian" mapping classes of the sphere, which are analogous to Brunnian links.
ISSN:2331-8422
DOI:10.48550/arxiv.9906133