Permanents of heavy-tailed random matrices with positive elements

We study the asymptotic behavior of permanents of \(n \times n\) random matrices \(A\) with positive entries. We assume that \(A\) has either i.i.d. entries or is a symmetric matrix with the i.i.d. upper triangle. Under the assumption that elements have power law decaying tails, we prove a strong la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
1. Verfasser: Antunović, Tonći
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of permanents of \(n \times n\) random matrices \(A\) with positive entries. We assume that \(A\) has either i.i.d. entries or is a symmetric matrix with the i.i.d. upper triangle. Under the assumption that elements have power law decaying tails, we prove a strong law of large numbers for \(\log \perm A\). We calculate the values of the limit \(\lim_{n \to \infty}\frac{\log \perm A}{n \log n}\) in terms of the exponent of the power law distribution decay, and observe a first order phase transition in the limit as the mean becomes infinite. The methods extend to a wide class of rectangular matrices. It is also shown that, in finite mean regime, the limiting behavior holds uniformly over all submatrices of linear size.
ISSN:2331-8422