Calderón-Zygmund operators associated to matrix-valued kernels

Calderón-Zygmund operators with noncommuting kernels may fail to be Lp-bounded for \(p \neq 2\), even for kernels with good size and smoothness properties. Matrix-valued paraproducts, Fourier multipliers on group vNa's or noncommutative martingale transforms are frameworks where we find such di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-01
Hauptverfasser: Hong, Guixiang, López-Sánchez, Luis Daniel, Martell, José María, Parcet, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calderón-Zygmund operators with noncommuting kernels may fail to be Lp-bounded for \(p \neq 2\), even for kernels with good size and smoothness properties. Matrix-valued paraproducts, Fourier multipliers on group vNa's or noncommutative martingale transforms are frameworks where we find such difficulties. We obtain weak type estimates for perfect dyadic CZO's and cancellative Haar shifts associated to noncommuting kernels in terms of a row/column decomposition of the function. Arbitrary CZO's satisfy \(H_1 \to L_1\) type estimates. In conjunction with \(L_\infty \to BMO\), we get certain row/column Lp estimates. Our approach also applies to noncommutative paraproducts or martingale transforms with noncommuting symbols/coefficients. Our results complement recent results of Junge, Mei, Parcet and Randrianantoanina.
ISSN:2331-8422
DOI:10.48550/arxiv.1201.4351