Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming

The tailored chemical synthesis of binary and ternary alloy nanoparticles with a uniform elemental composition is presented. Their dual use as magnetic susceptors for induction heating and catalytic agent for steam reforming of methane to produce hydrogen at temperatures near and above 800 °C is dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2018-08, Vol.130 (33), p.10729-10733
Hauptverfasser: Vinum, Morten G., Almind, Mads R., Engbæk, Jakob S., Vendelbo, Søren B., Hansen, Mikkel F., Frandsen, Cathrine, Bendix, Jesper, Mortensen, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tailored chemical synthesis of binary and ternary alloy nanoparticles with a uniform elemental composition is presented. Their dual use as magnetic susceptors for induction heating and catalytic agent for steam reforming of methane to produce hydrogen at temperatures near and above 800 °C is demonstrated. The heating and catalytic performance of two chemically synthesized samples of CoNi and Cu⊂CoNi are compared and held against a traditional Ni‐based reforming catalyst. The structural, magnetic, and catalytic properties of the samples were characterized by X‐ray diffraction, elemental analysis, magnetometry, and reactivity measurements. For induction‐heated catalysts, the conversion rate of methane is limited by chemical reactivity, as opposed to the case of traditional externally heated reformers where heat transport limitations are the limiting factor. Catalyst production by the synthetic route allows controlled doping with miniscule concentrations of auxiliary metals. Eine Alternative zur altbewährten Dampfreformierung nutzt einen Katalysator auf der Basis von CoNi‐Legierungsnanopartikeln. Der inhärent ferromagnetische Katalysator ist zusätzlich magnetisch anregbar, sodass durch induktives Heizen Temperaturen über 800 °C erreicht werden.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201804832