Smoothness of isometric flows on orbit spaces and applications to the theory of foliations

We prove here that given a proper isometric action \(K\times M\to M\) on a complete Riemannian manifold \(M\) then every continuous isometric flow on the orbit space \(M/K\) is smooth, i.e., it is the projection of an \(K\)-equivariant smooth flow on the manifold \(M\). As a direct corollary we infe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-05
Hauptverfasser: Alexandrino, Marcos M, Radeschi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove here that given a proper isometric action \(K\times M\to M\) on a complete Riemannian manifold \(M\) then every continuous isometric flow on the orbit space \(M/K\) is smooth, i.e., it is the projection of an \(K\)-equivariant smooth flow on the manifold \(M\). As a direct corollary we infer the smoothness of isometric actions on orbit spaces. Another relevant application of our result concerns Molino's conjecture, which states that the partition of a Riemannian manifold into the closures of the leaves of a singular Riemannian foliation is still a singular Riemannian foliation. We prove Molino's conjecture for the main class of foliations considered in his book, namely orbit-like foliations.
ISSN:2331-8422