Estimating \(\pi(x)\) and related functions under partial RH assumptions

The aim of this paper is to give a direct interpretation of the validity of the Riemann hypothesis up to a certain height \(T\) in terms of the prime-counting function \(\pi(x)\). This is done by proving the well-known explicit Schoenfeld bound on the RH to hold as long as \(4.92 \sqrt{x/\log(x)} \l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
1. Verfasser: Büthe, Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to give a direct interpretation of the validity of the Riemann hypothesis up to a certain height \(T\) in terms of the prime-counting function \(\pi(x)\). This is done by proving the well-known explicit Schoenfeld bound on the RH to hold as long as \(4.92 \sqrt{x/\log(x)} \leq T\). Similar statements are proven for the Riemann prime-counting function and the Chebyshov functions \(\psi(x)\) and \(\vartheta(x)\). Apart from that, we also improve some of the existing bounds of Chebyshov type for the function \(\psi(x)\).
ISSN:2331-8422
DOI:10.48550/arxiv.1410.7015