Minimal characteristic bisets for fusion systems

We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-03
Hauptverfasser: Gelvin, Matthew, Sune Precht Reeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gelvin, Matthew
Sune Precht Reeh
description We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \(\mathcal{F}\)-characteristic biset, and more generally, any centric linking system can be identified with the \(\mathcal{F}\)-centric part of \(\Lambda_\mathcal{F}\) as bisets. We explore the grouplike properties of \(\Lambda_\mathcal{F}\), and conjecture an identification of normalizer subsystems of \(\mathcal{F}\) with subbisets of \(\Lambda_\mathcal{F}\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084150993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084150993</sourcerecordid><originalsourceid>FETCH-proquest_journals_20841509933</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC9dLo-0sioube4khoVfaRHPp4Nvr4AM4_cP3r0SBStVV2yBuRMk8AgAejqi1KgTcKNBsJmkHk4zNLhFnsvJB7DJLH5P0C1MMkt-c3cw7sfZmYlf-uhX7y_l-ulbPFF-L49yPcUnhSz1C29Qauk6p_64PrTMztA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084150993</pqid></control><display><type>article</type><title>Minimal characteristic bisets for fusion systems</title><source>Free E- Journals</source><creator>Gelvin, Matthew ; Sune Precht Reeh</creator><creatorcontrib>Gelvin, Matthew ; Sune Precht Reeh</creatorcontrib><description>We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \(\mathcal{F}\)-characteristic biset, and more generally, any centric linking system can be identified with the \(\mathcal{F}\)-centric part of \(\Lambda_\mathcal{F}\) as bisets. We explore the grouplike properties of \(\Lambda_\mathcal{F}\), and conjecture an identification of normalizer subsystems of \(\mathcal{F}\) with subbisets of \(\Lambda_\mathcal{F}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Subsystems</subject><ispartof>arXiv.org, 2014-03</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gelvin, Matthew</creatorcontrib><creatorcontrib>Sune Precht Reeh</creatorcontrib><title>Minimal characteristic bisets for fusion systems</title><title>arXiv.org</title><description>We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \(\mathcal{F}\)-characteristic biset, and more generally, any centric linking system can be identified with the \(\mathcal{F}\)-centric part of \(\Lambda_\mathcal{F}\) as bisets. We explore the grouplike properties of \(\Lambda_\mathcal{F}\), and conjecture an identification of normalizer subsystems of \(\mathcal{F}\) with subbisets of \(\Lambda_\mathcal{F}\).</description><subject>Group theory</subject><subject>Subsystems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC9dLo-0sioube4khoVfaRHPp4Nvr4AM4_cP3r0SBStVV2yBuRMk8AgAejqi1KgTcKNBsJmkHk4zNLhFnsvJB7DJLH5P0C1MMkt-c3cw7sfZmYlf-uhX7y_l-ulbPFF-L49yPcUnhSz1C29Qauk6p_64PrTMztA</recordid><startdate>20140326</startdate><enddate>20140326</enddate><creator>Gelvin, Matthew</creator><creator>Sune Precht Reeh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140326</creationdate><title>Minimal characteristic bisets for fusion systems</title><author>Gelvin, Matthew ; Sune Precht Reeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20841509933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Group theory</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gelvin, Matthew</creatorcontrib><creatorcontrib>Sune Precht Reeh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelvin, Matthew</au><au>Sune Precht Reeh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimal characteristic bisets for fusion systems</atitle><jtitle>arXiv.org</jtitle><date>2014-03-26</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \(\mathcal{F}\)-characteristic biset, and more generally, any centric linking system can be identified with the \(\mathcal{F}\)-centric part of \(\Lambda_\mathcal{F}\) as bisets. We explore the grouplike properties of \(\Lambda_\mathcal{F}\), and conjecture an identification of normalizer subsystems of \(\mathcal{F}\) with subbisets of \(\Lambda_\mathcal{F}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084150993
source Free E- Journals
subjects Group theory
Subsystems
title Minimal characteristic bisets for fusion systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimal%20characteristic%20bisets%20for%20fusion%20systems&rft.jtitle=arXiv.org&rft.au=Gelvin,%20Matthew&rft.date=2014-03-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084150993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084150993&rft_id=info:pmid/&rfr_iscdi=true