Minimal characteristic bisets for fusion systems

We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-03
Hauptverfasser: Gelvin, Matthew, Sune Precht Reeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every saturated fusion system \(\mathcal{F}\) has a unique minimal \(\mathcal{F}\)-characteristic biset \(\Lambda_\mathcal{F}\). We examine the relationship of \(\Lambda_\mathcal{F}\) with other concepts in \(p\)-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \(\mathcal{F}\)-characteristic biset, and more generally, any centric linking system can be identified with the \(\mathcal{F}\)-centric part of \(\Lambda_\mathcal{F}\) as bisets. We explore the grouplike properties of \(\Lambda_\mathcal{F}\), and conjecture an identification of normalizer subsystems of \(\mathcal{F}\) with subbisets of \(\Lambda_\mathcal{F}\).
ISSN:2331-8422