Entanglement Entropy of the Gross-Neveu Model
We compute a variational approximation to the entanglement entropy for states of the Gross-Neveu model. Further, we examine the functional dependence of the entanglement entropy on the coupling and number of colors in the theory. Our results display non-peturbative behavior. It is shown that the ent...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute a variational approximation to the entanglement entropy for states of the Gross-Neveu model. Further, we examine the functional dependence of the entanglement entropy on the coupling and number of colors in the theory. Our results display non-peturbative behavior. It is shown that the entanglement entropy is monotonically decreasing and convex with respect to the coupling. We also show how the behavior of the entanglement entropy under renormalization group transformations is related to the beta function of the Gross-Neveu model, and compare these renormalization group results to our previous work on interacting scalar field theories. |
---|---|
ISSN: | 2331-8422 |