Weighted rooted trees and deformations of operads
We will define an operad \(\mathcal{B}^0\) on planar rooted trees. \(\mathcal{B}^0\) is analgous to the \(NAP\)-operad in the non-planar tree setting. We will define a family of "current-preserving" operads \(\mathcal{B}^\lambda\) depending on a scalar parameter \(\lambda\), which can be s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We will define an operad \(\mathcal{B}^0\) on planar rooted trees. \(\mathcal{B}^0\) is analgous to the \(NAP\)-operad in the non-planar tree setting. We will define a family of "current-preserving" operads \(\mathcal{B}^\lambda\) depending on a scalar parameter \(\lambda\), which can be seen as a deformation of the operad \(\mathcal{B}^0\). Forgetting the extra "current preserving" notion above give back the Brace operad for \(\lambda=1\) and the \(\mathcal{B}^0\) operad for \(\lambda=0\). A natural map from non-planar rooted trees to plane ones gives back the current-preserving interpolation between \(NAP\) and pre-Lie investigated in a previous article. |
---|---|
ISSN: | 2331-8422 |