(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive codes

In this paper, we study \(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive codes, where \(p\) is prime and \(u^{2}=0\). In particular, we determine a Gray map from \( \mathbb{Z}_p\mathbb{Z}_p[u]\) to \(\mathbb{Z}_p^{ \alpha+2 \beta}\) and study generator and parity check matrices for these codes. We prove tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-10
Hauptverfasser: Lu, Zhenliang, Zhu, Shixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study \(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive codes, where \(p\) is prime and \(u^{2}=0\). In particular, we determine a Gray map from \( \mathbb{Z}_p\mathbb{Z}_p[u]\) to \(\mathbb{Z}_p^{ \alpha+2 \beta}\) and study generator and parity check matrices for these codes. We prove that a Gray map \(\Phi\) is a distance preserving map from (\(\mathbb{Z}_p\mathbb{Z}_p[u]\),Gray distance) to (\(\mathbb{Z}_p^{\alpha+2\beta}\),Hamming distance), it is a weight preserving map as well. Furthermore we study the structure of \(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive cyclic codes.
ISSN:2331-8422