Hardy spaces for Fourier--Bessel expansions
We study Hardy spaces for Fourier--Bessel expansions associated with Bessel operators on \(((0,1), x^{2\nu+1}\, dx)\) and \(((0,1), dx)\). We define Hardy spaces \(H^1\) as the sets of \(L^1\)-functions for which their maximal functions for the corresponding Poisson semigroups belong to \(L^1\). Ato...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Hardy spaces for Fourier--Bessel expansions associated with Bessel operators on \(((0,1), x^{2\nu+1}\, dx)\) and \(((0,1), dx)\). We define Hardy spaces \(H^1\) as the sets of \(L^1\)-functions for which their maximal functions for the corresponding Poisson semigroups belong to \(L^1\). Atomic characterizations are obtained. |
---|---|
ISSN: | 2331-8422 |