New results on permutation polynomials over finite fields

In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms \(L(x)+\sum_{j=1}^k \gamma_jh_j(f_j(x))\) and \(x+\sum_{j=1}^k\gamma_jf_j(x)\). These generalize the results obtained by K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-06
Hauptverfasser: Qin, Xiaoer, Qian, Guoyou, Hong, Shaofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms \(L(x)+\sum_{j=1}^k \gamma_jh_j(f_j(x))\) and \(x+\sum_{j=1}^k\gamma_jf_j(x)\). These generalize the results obtained by Kyureghyan in 2011. Consequently, we characterize permutation polynomials of the form \(L(x)+\sum_{i=1} ^l\gamma_i {\rm Tr}_{{\bf F}_{q^m}/{\bf F}_{q}}(h_i(x))\), which extends a theorem of Charpin and Kyureghyan obtained in 2009.
ISSN:2331-8422