New results on permutation polynomials over finite fields
In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms \(L(x)+\sum_{j=1}^k \gamma_jh_j(f_j(x))\) and \(x+\sum_{j=1}^k\gamma_jf_j(x)\). These generalize the results obtained by K...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms \(L(x)+\sum_{j=1}^k \gamma_jh_j(f_j(x))\) and \(x+\sum_{j=1}^k\gamma_jf_j(x)\). These generalize the results obtained by Kyureghyan in 2011. Consequently, we characterize permutation polynomials of the form \(L(x)+\sum_{i=1} ^l\gamma_i {\rm Tr}_{{\bf F}_{q^m}/{\bf F}_{q}}(h_i(x))\), which extends a theorem of Charpin and Kyureghyan obtained in 2009. |
---|---|
ISSN: | 2331-8422 |