Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere
We provide estimates for weighted Fourier sums of integrable functions defined on the sphere when the weights originate from a multiplier operator acting on the space where the function belongs. That implies refined estimates for weighted Fourier sums of integrable kernels on the sphere that satisfy...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide estimates for weighted Fourier sums of integrable functions defined on the sphere when the weights originate from a multiplier operator acting on the space where the function belongs. That implies refined estimates for weighted Fourier sums of integrable kernels on the sphere that satisfy an abstract H\"{o}lder condition based on a parameterized family of multiplier operators defining an approximate identity. This general estimation approach includes an important class of multipliers operators, namely, that defined by convolutions with zonal measures. The estimates are used to obtain decay rates for the eigenvalues of positive integral operators on L^2(Sm) and generated by a kernel satisfying the H\"{o}lder condition based on multiplier operators on L^2(Sm). |
---|---|
ISSN: | 2331-8422 |