Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand

Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Reich, Nicholas G, Lauer, Stephen A, Sakrejda, Krzysztof, Iamsirithaworn, Sopon, Hinjoy, Soawapak, Suangtho, Paphanij, Suthachana, Suthanun, Clapham, Hannah E, Salje, Henrik, Cummings, Derek A T, Lessler, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Reich, Nicholas G
Lauer, Stephen A
Sakrejda, Krzysztof
Iamsirithaworn, Sopon
Hinjoy, Soawapak
Suangtho, Paphanij
Suthachana, Suthanun
Clapham, Hannah E
Salje, Henrik
Cummings, Derek A T
Lessler, Justin
description Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create accurate and actionable real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created an operational and computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing na\"ive seasonal models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083862937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083862937</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838629373</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAIMgKNo_LHguxE1b61kUvXvXYDc2pSa6m_h-PfgAT3OYYSZqjsasy7ZCnKlCZNBaY7PBujZzdT0Fx1YS51vKTGBDBw9KfewEXGRgsmOZ_IPgydT5W_IxCEQHqSdAva6go3DPBI7exCBkJQbwAc699eP3tlRTZ0eh4seFWh32592xfHJ8ZZJ0GWLm8FUX1K1pG9yajfmv-gC29URK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083862937</pqid></control><display><type>article</type><title>Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand</title><source>Free E- Journals</source><creator>Reich, Nicholas G ; Lauer, Stephen A ; Sakrejda, Krzysztof ; Iamsirithaworn, Sopon ; Hinjoy, Soawapak ; Suangtho, Paphanij ; Suthachana, Suthanun ; Clapham, Hannah E ; Salje, Henrik ; Cummings, Derek A T ; Lessler, Justin</creator><creatorcontrib>Reich, Nicholas G ; Lauer, Stephen A ; Sakrejda, Krzysztof ; Iamsirithaworn, Sopon ; Hinjoy, Soawapak ; Suangtho, Paphanij ; Suthachana, Suthanun ; Clapham, Hannah E ; Salje, Henrik ; Cummings, Derek A T ; Lessler, Justin</creatorcontrib><description>Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create accurate and actionable real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created an operational and computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing na\"ive seasonal models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decision making ; Dengue fever ; Epidemics ; Fever ; Incidence ; Infectious diseases ; Infrastructure ; Mathematical models ; Outbreaks ; Public health ; Real time ; Viral diseases ; Viruses</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Reich, Nicholas G</creatorcontrib><creatorcontrib>Lauer, Stephen A</creatorcontrib><creatorcontrib>Sakrejda, Krzysztof</creatorcontrib><creatorcontrib>Iamsirithaworn, Sopon</creatorcontrib><creatorcontrib>Hinjoy, Soawapak</creatorcontrib><creatorcontrib>Suangtho, Paphanij</creatorcontrib><creatorcontrib>Suthachana, Suthanun</creatorcontrib><creatorcontrib>Clapham, Hannah E</creatorcontrib><creatorcontrib>Salje, Henrik</creatorcontrib><creatorcontrib>Cummings, Derek A T</creatorcontrib><creatorcontrib>Lessler, Justin</creatorcontrib><title>Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand</title><title>arXiv.org</title><description>Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create accurate and actionable real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created an operational and computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing na\"ive seasonal models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.</description><subject>Decision making</subject><subject>Dengue fever</subject><subject>Epidemics</subject><subject>Fever</subject><subject>Incidence</subject><subject>Infectious diseases</subject><subject>Infrastructure</subject><subject>Mathematical models</subject><subject>Outbreaks</subject><subject>Public health</subject><subject>Real time</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAQAIMgKNo_LHguxE1b61kUvXvXYDc2pSa6m_h-PfgAT3OYYSZqjsasy7ZCnKlCZNBaY7PBujZzdT0Fx1YS51vKTGBDBw9KfewEXGRgsmOZ_IPgydT5W_IxCEQHqSdAva6go3DPBI7exCBkJQbwAc699eP3tlRTZ0eh4seFWh32592xfHJ8ZZJ0GWLm8FUX1K1pG9yajfmv-gC29URK</recordid><startdate>20151116</startdate><enddate>20151116</enddate><creator>Reich, Nicholas G</creator><creator>Lauer, Stephen A</creator><creator>Sakrejda, Krzysztof</creator><creator>Iamsirithaworn, Sopon</creator><creator>Hinjoy, Soawapak</creator><creator>Suangtho, Paphanij</creator><creator>Suthachana, Suthanun</creator><creator>Clapham, Hannah E</creator><creator>Salje, Henrik</creator><creator>Cummings, Derek A T</creator><creator>Lessler, Justin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151116</creationdate><title>Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand</title><author>Reich, Nicholas G ; Lauer, Stephen A ; Sakrejda, Krzysztof ; Iamsirithaworn, Sopon ; Hinjoy, Soawapak ; Suangtho, Paphanij ; Suthachana, Suthanun ; Clapham, Hannah E ; Salje, Henrik ; Cummings, Derek A T ; Lessler, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838629373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decision making</topic><topic>Dengue fever</topic><topic>Epidemics</topic><topic>Fever</topic><topic>Incidence</topic><topic>Infectious diseases</topic><topic>Infrastructure</topic><topic>Mathematical models</topic><topic>Outbreaks</topic><topic>Public health</topic><topic>Real time</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Reich, Nicholas G</creatorcontrib><creatorcontrib>Lauer, Stephen A</creatorcontrib><creatorcontrib>Sakrejda, Krzysztof</creatorcontrib><creatorcontrib>Iamsirithaworn, Sopon</creatorcontrib><creatorcontrib>Hinjoy, Soawapak</creatorcontrib><creatorcontrib>Suangtho, Paphanij</creatorcontrib><creatorcontrib>Suthachana, Suthanun</creatorcontrib><creatorcontrib>Clapham, Hannah E</creatorcontrib><creatorcontrib>Salje, Henrik</creatorcontrib><creatorcontrib>Cummings, Derek A T</creatorcontrib><creatorcontrib>Lessler, Justin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reich, Nicholas G</au><au>Lauer, Stephen A</au><au>Sakrejda, Krzysztof</au><au>Iamsirithaworn, Sopon</au><au>Hinjoy, Soawapak</au><au>Suangtho, Paphanij</au><au>Suthachana, Suthanun</au><au>Clapham, Hannah E</au><au>Salje, Henrik</au><au>Cummings, Derek A T</au><au>Lessler, Justin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand</atitle><jtitle>arXiv.org</jtitle><date>2015-11-16</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create accurate and actionable real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created an operational and computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing na\"ive seasonal models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083862937
source Free E- Journals
subjects Decision making
Dengue fever
Epidemics
Fever
Incidence
Infectious diseases
Infrastructure
Mathematical models
Outbreaks
Public health
Real time
Viral diseases
Viruses
title Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Infrastructure%20and%20methods%20for%20real-time%20predictions%20of%20the%202014%20dengue%20fever%20season%20in%20Thailand&rft.jtitle=arXiv.org&rft.au=Reich,%20Nicholas%20G&rft.date=2015-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083862937%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083862937&rft_id=info:pmid/&rfr_iscdi=true