Infrastructure and methods for real-time predictions of the 2014 dengue fever season in Thailand

Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Reich, Nicholas G, Lauer, Stephen A, Sakrejda, Krzysztof, Iamsirithaworn, Sopon, Hinjoy, Soawapak, Suangtho, Paphanij, Suthachana, Suthanun, Clapham, Hannah E, Salje, Henrik, Cummings, Derek A T, Lessler, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create accurate and actionable real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created an operational and computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing na\"ive seasonal models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.
ISSN:2331-8422