Logic of differential calculus and the zoo of geometric strujctures
Since the discovery of differential calculus by Newton and Leibniz and the subsequent continuous growth of its applications to physics, mechanics, geometry, etc, it was observed that partial derivatives in the study of various natural problems are (self-)organized in certain structures usually calle...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the discovery of differential calculus by Newton and Leibniz and the subsequent continuous growth of its applications to physics, mechanics, geometry, etc, it was observed that partial derivatives in the study of various natural problems are (self-)organized in certain structures usually called geometric. Tensors, connections, jets, etc, are commonly known examples of them. This list of classical geometrical structures is sporadically and continuously widening. For instance, Lie algebroids and BV-bracket are popular recent additions into it. Our goal is to show that the "zoo" of all geometrical structures has a common source in the calculus of functors of differential calculus over commutative algebras, which surprisingly comes from a due mathematical formalization of observability mechanism in classical physics. We also use this occasion for some critical remarks and discussion of some perspectives. |
---|---|
ISSN: | 2331-8422 |