Circulant \(S_2\) graphs
Recently, Earl, Vander Meulen, and Van Tuyl characterized some families of Cohen-Macaulay or Buchsbaum circulant graphs discovered by Boros-Gurvich-Milani\(\check{\text{c}}\), Brown-Hoshino, and Moussi. In this paper, we will characterize those families of circulant graphs which satisfy Serre's...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, Earl, Vander Meulen, and Van Tuyl characterized some families of Cohen-Macaulay or Buchsbaum circulant graphs discovered by Boros-Gurvich-Milani\(\check{\text{c}}\), Brown-Hoshino, and Moussi. In this paper, we will characterize those families of circulant graphs which satisfy Serre's condition \(S_2\). More precisely, we show that for some families of circulant graphs, \(S_2\) property is equivalent to well-coveredness or Buchsbaumness, and for some other families it is equivalent to Cohen-Macaulayness. We also give examples of infinite families of circulant graphs which are Buchsbaum but not \(S_2\), and vice versa. |
---|---|
ISSN: | 2331-8422 |