AR-Components of domestic finite group schemes: McKay-Quivers and Ramification
For a domestic finite group scheme, we give a direct description of the Euclidean components in its Auslander-Reiten quiver via the McKay-quiver of a finite linearly reductive subgroup scheme of \(SL(2)\). Moreover, for a normal subgroup scheme \(\mathcal{N}\) of a finite group scheme \(\mathcal{G}\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a domestic finite group scheme, we give a direct description of the Euclidean components in its Auslander-Reiten quiver via the McKay-quiver of a finite linearly reductive subgroup scheme of \(SL(2)\). Moreover, for a normal subgroup scheme \(\mathcal{N}\) of a finite group scheme \(\mathcal{G}\), we show that there is a connection between the ramification indices of the restriction morphism \(\mathbb{P}(\mathcal{V}_{\mathcal{N}})\rightarrow\mathbb{P}(\mathcal{V}_{\mathcal{G}})\) between their projectivized cohomological support varieties and the ranks of the tubes in their Auslander-Reiten quivers. |
---|---|
ISSN: | 2331-8422 |