An L2-quotient algorithm for finitely presented groups on arbitrarily many generators
We generalize the Plesken-Fabiańska \(\mathrm{L}_2\)-quotient algorithm for finitely presented groups on two or three generators to allow an arbitrary number of generators. The main difficulty lies in a constructive description of the invariant ring of \(\mathrm{GL}(2, K)\) on \(m\) copies of \(\mat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the Plesken-Fabiańska \(\mathrm{L}_2\)-quotient algorithm for finitely presented groups on two or three generators to allow an arbitrary number of generators. The main difficulty lies in a constructive description of the invariant ring of \(\mathrm{GL}(2, K)\) on \(m\) copies of \(\mathrm{SL}(2, K)\) by simultaneous conjugation. By giving this description, we generalize and simplify some of the known results in invariant theory. An implementation of the algorithm is available in the computer algebra system Magma. |
---|---|
ISSN: | 2331-8422 |