An L2-quotient algorithm for finitely presented groups on arbitrarily many generators

We generalize the Plesken-Fabiańska \(\mathrm{L}_2\)-quotient algorithm for finitely presented groups on two or three generators to allow an arbitrary number of generators. The main difficulty lies in a constructive description of the invariant ring of \(\mathrm{GL}(2, K)\) on \(m\) copies of \(\mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-02
1. Verfasser: Jambor, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the Plesken-Fabiańska \(\mathrm{L}_2\)-quotient algorithm for finitely presented groups on two or three generators to allow an arbitrary number of generators. The main difficulty lies in a constructive description of the invariant ring of \(\mathrm{GL}(2, K)\) on \(m\) copies of \(\mathrm{SL}(2, K)\) by simultaneous conjugation. By giving this description, we generalize and simplify some of the known results in invariant theory. An implementation of the algorithm is available in the computer algebra system Magma.
ISSN:2331-8422