On Hypothesis about the Second Eigenvalue of the Leontief Matrix
If an arbitrarily positive eigenvector is repeatedly premultiplied by a positive matrix, then the result tends towards a unique, positive (Frobenius) eigenvector. Brady has demonstrated that the expected absolute magnitude of the estimate of the second largest eigenvalue of a positive random matrix...
Gespeichert in:
Veröffentlicht in: | Economic systems research 1998-09, Vol.10 (3), p.285-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If an arbitrarily positive eigenvector is repeatedly premultiplied by a positive matrix, then the result tends towards a unique, positive (Frobenius) eigenvector. Brady has demonstrated that the expected absolute magnitude of the estimate of the second largest eigenvalue of a positive random matrix (with identically and independently distributed entries) declines monotonically with the increasing size of the matrix. Hence, the larger the system is, the faster is the convergence. Molnár and Simonovits examined Brady's conjecture in the case where entries of a stochastic matrix are close to 1/n. We prove this hypothesis for any stochastic and positive matrix. |
---|---|
ISSN: | 0953-5314 1469-5758 |
DOI: | 10.1080/762947113 |