Theorem proving for prenex Gödel logic with Delta: checking validity and unsatisfiability

G\"odel logic with the projection operator Delta (G_Delta) is an important many-valued as well as intermediate logic. In contrast to classical logic, the validity and the satisfiability problems of G_Delta are not directly dual to each other. We nevertheless provide a uniform, computational tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-03
Hauptverfasser: Baaz, Matthias, Ciabattoni, Agata, Fermüller, Christian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G\"odel logic with the projection operator Delta (G_Delta) is an important many-valued as well as intermediate logic. In contrast to classical logic, the validity and the satisfiability problems of G_Delta are not directly dual to each other. We nevertheless provide a uniform, computational treatment of both problems for prenex formulas by describing appropriate translations into sets of order clauses that can be subjected to chaining resolution. For validity a version of Herbrand's Theorem allows us to show the soundness of standard Skolemization. For satisfiability the translation involves a novel, extended Skolemization method.
ISSN:2331-8422
DOI:10.48550/arxiv.1202.6352