On time-interval transformations in special relativity
We revisit the problem of the Lorentz transformation of time-intervals in special relativity. We base our discussion on the time-interval transformation formula \( c\Delta t' = \gamma (c\Delta t - \vec{\beta} \cdot \Delta \vec{r}) \) in which \( \Delta t'\) and \( \Delta t \) are the time-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit the problem of the Lorentz transformation of time-intervals in special relativity. We base our discussion on the time-interval transformation formula \( c\Delta t' = \gamma (c\Delta t - \vec{\beta} \cdot \Delta \vec{r}) \) in which \( \Delta t'\) and \( \Delta t \) are the time-intervals between a given pair of events, in two inertial frames \( S \) and \( S'\) connected by an general boost. We observe that the Einstein time-dilation-formula, the Doppler formula and the relativity of simultaneity, all follow when one the frames in the time-interval transformation formula is chosen as the canonical frame of the underlying event-pair. We also discuss the interesting special case \( \Delta t' = \gamma \Delta t \) of the time-interval transformation formula obtained by setting \( \vec{\beta} \cdot \Delta \vec{r}=0 \) in it and argue why it is really \textbf{not} the Einstein time-dilation formula. Finally, we present some examples which involve material particles instead of light rays, and highlight the utility of time-interval transformation formula as a calculational tool in the class room. |
---|---|
ISSN: | 2331-8422 |