Harmonious Compatibility Dominates Influence of Side‐Chain Engineering on Morphology and Performance of Ternary Solar Cells

A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-08, Vol.8 (22), p.n/a
Hauptverfasser: Kumari, Tanya, Lee, Sang Myeon, Lee, Kyu Cheol, Cho, Yongjoon, Yang, Changduk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OSCs) has not yet been undertaken. In this study, the performance of ternary OSCs is investigated in a given poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PTB7‐Th:PC71BM) host set by introducing various small molecule donors (SMDs) with different terminal side‐chain lengths. As expected, the performance of binary OSCs with SMDs depends greatly on the side‐chain length. In contrast, it is observed that all SMD‐based ternary OSCs exhibit almost identical and high power‐conversion efficiencies of 12.0–12.2%. This minor performance variation is attributed to good molecular compatibility between the two donor components, as evidenced by in‐depth electrical and morphological investigations. These results highlight that the alloy‐like structure formed due to the high compatibility of the donor molecules has a more significant effect on the overall performance than the side‐chain length, offering a new guideline for pairing donor components for achieving high‐performance ternary OSCs. Harmonious compatibility between the polymer and small molecule donors (SMDs) with different terminal side‐chain lengths leads to a similar high power conversion efficiency of 12.0–12.2% in ternary solar cells in contrast to the binary systems with SMDs, where the performance depends on side‐chain length, offering a new guideline for pairing donor components for accomplishing high‐performance ternary solar cells.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201800616