Measuring the performance of sensors that report uncertainty
We provide methods to validate and compare sensor outputs, or inference algorithms applied to sensor data, by adapting statistical scoring rules. The reported output should either be in the form of a prediction interval or of a parameter estimate with corresponding uncertainty. Using knowledge of th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide methods to validate and compare sensor outputs, or inference algorithms applied to sensor data, by adapting statistical scoring rules. The reported output should either be in the form of a prediction interval or of a parameter estimate with corresponding uncertainty. Using knowledge of the `true' parameter values, scoring rules provide a method of ranking different sensors or algorithms for accuracy and precision. As an example, we apply the scoring rules to the inferred masses of cattle from ground force data and draw conclusions on which rules are most meaningful and in which way. |
---|---|
ISSN: | 2331-8422 |