A uniformly convergent difference scheme on a modified Shishkin mesh for the singular perturbation boundary value problem

In this paper we are considering a semilinear singular perturbation reaction -- diffusion boundary value problem, which contains a small perturbation parameter that acts on the highest order derivative. We construct a difference scheme on an arbitrary nonequidistant mesh using a collocation method a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-11
Hauptverfasser: Duvnjaković, Enes, Karasuljić, Samir, Pasic, Vedad, Zarin, Helena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we are considering a semilinear singular perturbation reaction -- diffusion boundary value problem, which contains a small perturbation parameter that acts on the highest order derivative. We construct a difference scheme on an arbitrary nonequidistant mesh using a collocation method and Green's function. We show that the constructed difference scheme has a unique solution and that the scheme is stable. The central result of the paper is \(\epsilon\)-uniform convergence of almost second order for the discrete approximate solution on a modified Shishkin mesh. We finally provide two numerical examples which illustrate the theoretical results on the uniform accuracy of the discrete problem, as well as the robustness of the method.
ISSN:2331-8422